Distributed Machine Learning: Foundations, Trends, and Practices
نویسندگان
چکیده
In recent years, artificial intelligence has achieved great success in many important applications. Both novel machine learning algorithms (e.g., deep neural networks), and their distributed implementations play very critical roles in the success. In this tutorial, we will first review popular machine learning algorithms and the optimization techniques they use. Second, we will introduce widely used ways of parallelizing machine learning algorithms (including both data parallelism and model parallelism, both synchronous and asynchronous parallelization), and discuss their theoretical properties, strengths, and weakness. Third, we will present some recent works that try to improve standard parallelization mechanisms. Last, we will provide some practical examples of parallelizing given machine learning algorithms in online application (e.g. Recommendation and Ranking) by using popular distributed platforms, such as Spark MlLib, DMTK, and Tensorflow. By listening to this tutorial, the audience can form a clear knowledge framework about distributed machine learning, and gain some hands-on experiences on parallelizing a given machine learning algorithm using popular distributed systems.
منابع مشابه
Adaptation, Learning, and Optimization over Networks
This work deals with the topic of information processing over graphs. The presentation is largely self-contained and covers results that relate to the analysis and design of multi-agent networks for the distributed solution of optimization, adaptation, and learning problems from streaming data through localized interactions among agents. The results derived in this work are useful in comparing ...
متن کاملDistributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers
Many problems of recent interest in statistics and machine learning can be posed in the framework of convex optimization. Due to the explosion in size and complexity of modern datasets, it is increasingly important to be able to solve problems with a very large number of features or training examples. As a result, both the decentralized collection or storage of these datasets as well as accompa...
متن کاملDeterminantal Point Processes for Machine Learning
determinantal point processes for machine learning is available in our digital library an online access to it is set as public so you can get it instantly. Our books collection hosts in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Merely said, the determinantal point processes for machine learning is universally compatible with a...
متن کاملAn ADMM algorithm for solving ℓ1 regularized MPC
[1] M. Gallieri, J. M. Maciejowski “lasso MPC: Smart Regulation of OverActuated Systems”, to appear in ACC 2012. [2] M. Annergren, A. Hansson, B. Wahlberg “An ADMM Algorithm for Solving l1 Regularized MPC”, submitted. [3] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein “Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers”, Foundations and Tr...
متن کاملBayesian Reinforcement Learning: A Survey
Bayesian methods for machine learning have been widely investigated, yielding principled methods for incorporating prior information into inference algorithms. In this survey, we provide an in-depth review of the role of Bayesian methods for the reinforcement learning (RL) paradigm. The major incentives for incorporating Bayesian reasoning in RL are: 1) it provides an elegant approach to action...
متن کامل